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The development of the continuum gyrokinetic code COGENT for edge plasma 

simulations is reported. The present version of the code models a nonlinear axisymmetric 4D (R, 

v||, μ) gyrokinetic equation coupled to the long-wavelength limit of the gyro-Poisson equation. 

Here, R is the particle gyrocenter coordinate in the poloidal plane, and v|| and μ are the guiding 

center velocity parallel to the magnetic field and the magnetic moment, respectively. The 

COGENT code utilizes a fourth-order finite-volume (conservative) discretization combined with 

arbitrary mapped multiblock grid technology (nearly field-aligned on blocks) to handle the 

complexity of tokamak divertor geometry with high accuracy. Topics presented are the 

implementation of increasingly detailed model collision operators, and the results of neoclassical 

transport simulations including the effects of a strong radial electric field characteristic of a 

tokamak pedestal under H-mode conditions. 

I. INTRODUCTION

Due to a wide range of collisionality regimes, short radial length scales for density and 

temperature variations (comparable to particle drift orbit excursions), and scale lengths along the 

magnetic field comparable to collisional mean free paths, a kinetic simulation is required for an 

accurate modeling of transport processes in the edge of a tokamak [1]. Presently, there are two 

main approaches to solving a kinetic equation: (i) the particle-in-cell (PIC) method, in which one 

uses macroparticles to integrate along the characteristic of the kinetic equation [2-5], and (ii) the 

continuum method in which the kinetic equation is discretized on a phase-space grid [6-8]. The 

application of the PIC approach to some important problems of tokamak edge dynamics may, 

however, require a very large number of macroparticles to suppress numerical noise. Among 
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these problems is the simulation of low-amplitude turbulence under H-mode conditions, subject 

to an adequate representation of the background quasi-equilibrium dynamics [1]. Moreover, even 

for the case of axisymmetric (non-turbulent) transport, adequate modeling of the electron and ion 

heat fluxes to the divertor plates requires resolving the energy distribution function for 

suprathermal particles, which implies a very large total number of macroparticles per cell [9].  

For instance, as pointed out in Ref. [9] for the case of a PIC code written in one dimension of 

configuration space, to have a moderate noise level of 1.0~1~ cN for particles with energy 

TTc 10 , requires    612 10exp 
 particle per cell. Here, Nc is the number of 

macroparticles with energy εc, and T is the effective temperature of the particle distribution. 

These and other issues motivate the use of continuum kinetic codes for the numerical modeling 

of a tokamak edge.

Making use of advanced numerical methods from the fluid community, and building on 

the success of continuum core-region codes (e.g., GYRO [10], GENE [11], etc.) and the 

continuum edge code TEMPEST [8], the Edge Simulation Laboratory collaboration (ESL) [12]

has started development of a new continuum kinetic code COGENT for edge plasma 

simulations. The code is distinguished by the use of a fourth-order finite-volume (conservative) 

discretization [13-14] combined with arbitrary mapped multiblock grid technology [14] (nearly 

field-aligned on blocks) to handle the complexity of divertor geometry with high accuracy.

Another distinguishing feature of the code is the use of the Colella-Sekora flux-limiter to 

suppress unphysical oscillations about discontinuities while maintaining high-order accuracy 

elsewhere [15]. Finally, the code is written in v||-μ (parallel velocity – magnetic moment) 

variables, which avoids “cut-cell” issues appearing, for instance, when E - μ (energy – magnetic 

moment) variables are used such that the v|| =0 phase-space boundary does not align with the 

mesh. 

It is of great importance for gyrokinetic code development to analyze numerical and 

physical properties of reduced collision models, as well as to achieve a detailed understanding of

code performance in neoclassical simulations, which is an important step in the process of 

modeling the complex tokamak plasma dynamics [16-19]. In the present work we report on the

implementation of a succession of increasingly comprehensive collision operators, and discuss 

their performance in neoclassical simulations carried out using the local closed-flux-surface 
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version of the COGENT code. This work extends our previous analysis [20] to including the 

effects of a self-consistent electric field, and also implementing more detailed collision options. 

In particular, here we discuss the implementation and testing of a recently proposed model 

linearized collision operator [21]. 

Finally, we present self-consistent neoclassical simulations performed for the case of 

steep density gradients, L~ρiθ, characteristic of a tokamak edge under H-mode conditions. Here, 

ρiθ is the poloidal ion gyro-radius, and L is the radial length-scale for variation of the plasma 

density. Recent analytical studies demonstrated that a strong radial electric field consistent with 

these steep density gradients can have a significant influence on the properties of neoclassical 

transport in a tokamak pedestal [22-24]. In particular, a suppression of the ion heat flux, and a 

change in the poloidal ion flow direction in a weakly collisional (banana) regime were

demonstrated. In this work we present first numerical simulations of these phenomena 

demonstrating qualitative agreement with the results of the analytical calculations. 

The paper is organized as follows: The simulation model is summarized in Sec. II. In Sec. 

III we report on benchmark exercises using the simple Krook collision model to test the code 

performance in self-consistent neoclassical simulations. The implementation and testing of the 

Lorentz operator and the model linearized collision operator are discussed in Secs. IV and V, 

respectively. Finally, in Sec. VI, we present the results of neoclassical simulations taking into 

account the effects of a strong (self-consistent) radial electric field.  

II. SIMULATION MODEL 

The present 4D version of the COGENT code solves an axisymmetric gyrokinetic 

equation for a gyrocenter distribution function fα(R,v||,μ,t) written in conservative form [25]
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Here, α denotes the particle species, is the gradient with respect to R, and the guiding center 

velocity R is given by 
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The evolution of the guiding center parallel velocity is determined from 
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where  mα and Zα are the species mass and charge state, respectively, e is the electron charge, 

Φ(R,t) describes the long wavelength neoclassical electrostatic potential variation, B(R)=Bb is 

the magnetic field with b denoting the unit vector along the field,

    bBRB  eZm  ||||
* vv, , and   bBR *   ||

*
|| v,B . Finally, C[fα] denotes the collision 

operator, and the presently available collision models include a simple drag-diffusion operator in 

parallel velocity [20], Krook collisions (Sec. III), Lorentz collisions (Sec. IV), and a linearized 

model Fokker-Planck collision operator conserving momentum and energy [21] (Sec. V). 

The present version of the code utilizes a long wavelength approximation, 1 k , to 

represent the gyrokinetic Poisson equation for electrostatic potential variations in the form [25],
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Here, ρα=VT,α/Ωα is the particle thermal gyroradius, Ωα=ZαeB/(mαc) is the cyclotron frequency, 

1
k represents the characteristic length-scale for variations of the electrostatic potential, 

  bb , and the guiding center density nα,gc is specified by
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Electrons can be modeled either kinetically or through use of a Boltzmann (in the linear limit, 

adiabatic) approximation, with various options for the coefficient of the Boltzmann factor [14, 

26]. In particular, for the single-ion-species neoclassical simulations reported in this work, we 

use a Boltzmann model for the electron density of the form

  
  
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ie Te
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nn





exp

exp
0 ,                                                  (6) 

Here, ψ is the poloidal flux function, Te(ψ) corresponds to the electron temperature distribution 

across magnetic flux surfaces, ni0 is the initial ion density distribution, and Zi=1 is assumed.

Making use of the long wavelength approximation, we neglect the small “pressure-term”

corrections [the second term in the curly brackets in Eq. (5)] and adopt 

   ddBfmn iiigci ||
*
||, v2  and      ddBtfmn iiii ||

*
||0 v02   for the COGENT 
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implementation of the gyro-Poisson system. The flux surface average operator introduced in Eq.

(6) is defined as 

                         
  


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
B

dl

B

dl
YY ,                                                    (7)

where the integration should be taken one turn around the torus in the polodial direction. Finally, 

for all neoclassical simulations discussed here, the Neumann boundary condition, ∂Φ/∂ψ=0, is 

imposed at the domain boundaries. Note that the electron model in Eq. (6) yields a zero flux 

surface averaged radial electron particle flux. The quasi-neutrality of the “final” quasi-stationary

state therefore requires the corresponding flux surface averaged ion particle flux to be zero as 

well.

The COGENT code has various options for the magnetic field geometry. In particular, 

the Miller model [27] is available to describe a closed flux surface (core) region. Also, X-point 

(single-null) geometry is available in the divertor version of the code. For simplicity, here we 

consider a magnetic geometry with concentric circular flux surfaces yielding

    cos, 00 rRRBrB T  ,                                             (8a)

    cos, 00 rRRBrB p  .                                            (8b)

Here, r is the minor radius coordinate, θ is the poloidal angle increasing in the counterclockwise 

direction, θ=0 corresponds to the outer midplane, and the directions of the coordinate system unit 

vectors are given by    eee r . For the simulations reported, we adopt a “local” magnetic 

geometry, taking BT and Bp to be constants. The safety factor q, and the inverse aspect ratio ε, 

which are used below, are defined as q=εBφ/Bθ, and ε=r/R0, where R0 is the tokamak major 

radius. We also introduce q0=ε0BT/Bp and ε0=r0/R0, where r0=(rmin+rmax)/2 corresponds to the 

middle of the simulation domain, and rmin and rmax are the minor radius coordinates 

corresponding to the domain boundaries. Unless stated otherwise (e.g., Fig. 6), we present the 

result of the numerical simulations evaluated at r=r0.

For simplicity, we consider the case of a single ion species with Zi=1, and mi=2mp, where 

mp is the proton mass. The initial distribution function is taken to be a local Maxwellian 

distribution, 
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where the initial density and temperature profiles are specified by  

     nnni rrnrn  000 tanh1  ,                                              (10)

     TTTi rrTrT  000 tanh1  .                                              (11)

The electron temperature in Eq. (6) is assumed to be equal to the ion temperature at the middle of 

the domain, i.e., Te(r)=T0. Finally, for future reference, we define the ion thermal velocity as 

VT=(2Ti0/mi)
1/2.

Neoclassical verification studies involve detailed analysis of the flux-surface-averaged

radial particle and heat fluxes, as well as the parallel V|| and poloidal Vθ flow velocities. These 

quantities are calculated in the code as follows
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where   fddBmn i  ||
*
|| v2 , eθ denotes the unit vector in the poloidal direction, and the 

subscript i (denoting ions) has been suppressed in the notation for f , R , and *
||B  . The 

diagnostics in Eq. (13) corresponds to the total (i.e., the sum of kinetic and potential) energy 

flux. However, in the final state where the ion particle flux Γ decays to zero, the energy flux in 

Eq. (13) becomes equal to the conductive heat flux [18, 28]. Details of the poloidal flow velocity 

diagnostics [Eq. (15)], which involves not only the guiding center flow (the first term), but also 

the curl of the magnetization (the second term) can be found in Ref. [29].

Although the flow velocity diagnostics introduced in Eqs. (14)-(15) seem intuitively 

appealing, it is important to discuss their accuracy in representing the actual velocity moments of 

the fully-kinetic (6D) distribution function. Note that the guiding center parallel velocity 

coordinate, v||, is not identical to a particle’s parallel velocity. A finite difference associated with 

the so-called Banos drift [30] appears already in first order in δi, where δi≡(ρi/R0)<<1, and 
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therefore the flow velocity calculations are, in principal, only accurate in the zero order. 

However, for the case of the neoclassical simulations performed here, the solution to Eq. (1) 

remains close to the initial distribution [Eq. (9)], f=FM+O(δiqκTR)FM, where δiqκTR <<1. 

Therefore, the change of the flow velocities with time is accurately described by Eqs. (14)-(15) 

through order δi, and it is only the initial values that are missing δi-corrections. Moreover, for the 

case where r0κT~1 (typical for a tokamak core) and BT>>Bp, variations in the flow velocities, 

O(δiqκTR)VT, associated with variations in the distribution function, are much larger than the 

missing corrections associated with the initial flows, O(δi)VT. Therefore, the flow velocity 

diagnostics given in Eqs. (14)-(15) is accurate in that regime. Note that variations in the ion flow

become even more dominant relative to the initial missing corrections for the case of steep 

density gradients, characteristic of a tokamak pedestal under the H-mode conditions. 

It is important to remark that the axisymmetric gyrokinetic simulation model specified by 

Eqs. (1)-(4) is not accurate enough to adequately describe the slow evolution of a long 

wavelength ( 1~Lk ) neoclassical radial electric field [31-33] in a quasi-stationary state, where

the particle fluxes across the magnetic surfaces are, to order 2
i , independent of the radial 

electric field (so-called intrinsic ambipolarity). However, here we restrict our studies to the 

analysis of a not-intrinsically-ambipolar [34] rapid initial relaxation of the local Maxwellian

distribution [Eq. (9)] toward a quasi-stationary state (neoclassical quasi-equilibrium). The 

subsequent slow (transport time scale, 2
iii ) evolution of the quasi-stationary state including 

the evolution of a pressure profile, “intrinsically ambipolar” radial electric field and the toroidal 

angular momentum is not considered. Here, νii denotes the ion-ion collision frequency.

The quasi-stationary state is characterized by radial force balance 

  0
1



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
r

eZ
dr

dp

n
BVBV

c

eZ
i
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 ,                                        (16)

where Vφ and Vθ are the toroidal and poloidal ion flow velocity, respectively, and pi=niTi is the

ion thermal pressure. The quasi-equilibrium neoclassical value of the poloidal flow velocity in 

Eq. (16) is set during the rapid relaxation (occurs on the collisional time scale) by the parallel 

viscous forces associated with the static magnetic field variation and is given by [35]

dr

dT

eBZ

c
kV i

i

0 .                                                         (17)
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Here, k is the poloidal flow coefficient, which depends on the plasma collisionality. For the case 

where Er<<VTBθ/c, which is typical for a tokamak core, k is equal -2.1 in the Pfirsch-Schluter 

(highly collisional) regime, -0.5 in the plateau (moderately collisional) regime, and 1.17 in the 

banana (weakly collisional) regime [35]. In contrast to the poloidal flow, the flux-surface-

averaged toroidal angular momentum,  cBRERVnmP prii  4 remains nearly constant 

during the rapid (collisional) relaxation. Therefore, the radial electric field corresponding to the 

relaxed quasi-stationary state is determined as a linear function of the initial toroidal angular 

momentum and the pressure gradient diamagnetic flows consistent with Eq. (16). It is also 

important to note that while the flux-surface-averaged toroidal angular momentum remains 

nearly constant, generation of poloidal variations in the toroidal velocity at the level of the 

diamagnetic flow velocity can occur on the fast (collisional) time scale along with the relaxation 

of the poloidal flow. 

III. NEOCLASSICAL SIMULATIONS WITH THE KROOK COLLISION MODEL

The benchmark exercises carried out with the Krook collision model are used to test the

performance of the COGENT code in self-consistent neoclassical simulations. In particular, for 

the case of a uniform temperature profile, κT=0, we recover the Boltzman relation for the self-

consistent distribution of potential variations. We then study generation of ion poloidal flow for 

the case of a nonuniform temperature distribution, and find the results of the numerical 

simulations in very good agreement with the predictions of an analytical calculation developed 

below for the case of the particle-conserving Krook model.

For the case of a single ion species, the following Krook model is used:

  ||||
*
||

0
||||

*
||

0

*
||

*
|| vvvv fddB

T

m
BFfddB

n

F
BfBfCB

i

i
Mcm

i

M
cpcK    .         (18)

Here, MFff  , νc is the collision frequency, and ηp and ηm take only the two values of either 

zero or unity to turn off (on) the corresponding particle and momentum restoring terms. 

The results of the numerical simulations performed with the particle and momentum 

conserving version of the Krook model (i.e., ηp=1, ηm=1) for the case of a zero temperature 

gradient, κT=0, are shown in Fig. 1. It is readily seen that, after the relaxation of the initial 

transients corresponding to the geodesic acoustic mode (GAM) excitations [36], the system

reaches a quasi-stationary state in which the potential distribution is described by the Boltzmann
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relation, i.e. 01  redrdpn ii , consistent with negligible generation of toroidal ion flow.

Here, pi and ni are the ion pressure and density in the quasi-equlibrium state. The simulations 

also demonstrate that the Boltzmann relation remains valid even for large density gradients, 
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FIG 1. Neoclassical simulations for zero-temperature-gradient plasmas, κT=0, with small ε1/2ρiθκn=0.024 
[(a), (c)] and large ε1/2ρiθκn=0.4  [(b), (d)] density gradients. Frames (a) and (b) show the time evolution 
of the normalized radial electric field, eErr0/T0. Frames (c) and (d) compare the radial electric field (red 
dots) to the Boltzmann relation (blue curve). The parameters of the simulations are ε0=0.1, q0=1.2, 
ρi/R0=1.2×10-4, r0/Δn=106, νcVT/qR0=0.4. The grid resolution is nr=128, nθ=16, nv||=48, nμ=32 [(a), (c)]
and nr=96, nθ=16, nv||=48, nμ=32 [(b), (d)]. The velocity grid size corresponds to |v|||max/VT =3.5, 
μmaxBφ/T0=11. Results are obtained using the particle- and momentum-conserving version of the Krook 
collision model, ηp=ηm=1.
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1~ni   , consistent with the numerical results in Ref. [37], and analytical predictions in 

Refs. [38-39]. Here,  piiTi eBZcmV denotes the poloidal gyroradius. 

Next, consider the case where the temperature distribution is not uniform. The 

temperature gradients generate a poloidal ion flow, and the electric field is no longer described 

by the simple Boltzmann relation. We present an analytical calculation of the quasi-stationary 

radial electric field for the case of the particle conserving Krook model (ηp=1, ηm=0), assuming a 

large aspect ratio ε=a/R0<<1, and neglecting the effects of trapped particles provided

νc>>ε1/2VT/qR. Note that the latter condition is different from the corresponding conventional 

condition νc>>ε3/2VT/qR and is discussed in detail later in this section. Following the method 

developed in Ref. [40], consider a steady-state drift-kinetic equation for the first order correction 

to a local Maxwellian distribution, f1=F-FM, written in energy W=(mv2/2+eΦ) and magnetic 

moment variables
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Here, the gradient of a local Maxwellian distribution, FM [see Eq. (9)], is given by
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  id R 
2
||

2 v2/vv is the radial drift velocity, and        ,,2v|| rBreWmi  is a

parallel velocity, which in general depends on the poloidal angle coordinate. However, under the 

assumptions of the present analysis, we can neglect the poloidal variations corresponding to the 

magnetic mirror force. Also, poloidal variations in the neoclassical electrostatic potential are 

generally small. Therefore, we can neglect the poloidal variations in the parallel velocity, and 

taking f1=f+cosθ+f-sinθ, it is straightforward to show that

0v3

0

   fd
n

F
ff

i

M
cct  ,                                              (21)

dr

dF
fd

n

F
ff M

d
i

M
cct vv3

0

    ,
                                      (22)

where we introduced ωt≡v||/qR. 

Although, it does not seem plausible to obtain an analytic solution to the system of 

integral equations (21)-(22), one can still calculate the flux surface average of the radial particle 
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flux,  sinvv 1
3

dfd , and then obtain an equation for the radial electric field from the 

quasi-neutrality condition, which requires zero quasi-stationary ion particle flux, Γ=0 (see Sec. 

II). Note that if we were to consider a physically more adequate momentum conserving version 

of the Krook model (i.e., ηp=ηm=1), the quasi-stationary particle flux would be intrinsically

ambipolar (see Sec. II). That is, the quasi-stationary value of the ion particle flux would be zero 

through order (κTρi)
2  (and through order [κTρi]

3 for an up-down symmetric tokamak [33, 41]) 

independent of the radial electric field. Therefore, for the case of the momentum-conserving

Krook model we would only be able to determine the combination Er+VφBθ, but not the electric 

field separately (as discussed in Sec. II). Note that the fact that a quasi-stationary value of the 

radial electric field can be determined independently of Vφ for the case where ηp=1, ηm=0 is

consistent with fast (collisional) relaxation of the toroidal angular momentum provided by a non-

zero parallel friction force. Finally, we also note that a quasi-stationary state with zero particle 

flux is only consistent with a particle-conserving (ηp=1) version of the Krook collision model. 

For the simplest case of a non-conservative Krook operator, i.e., ηp= ηm=0, the ion particle flux 

would have to balance the particle production associated with the non-conservative collisional 

model. 

It is straightforward to show from Eqs. (21)-(22) that

dr

dF
fd

n

F
fd

n

F
f M

d
ct

c

i

M

ct

c

i

M

ct

ct vvv
22

3

0
22

2
3

0
22 















   ,                       (23)

and it now follows that the radial particle flux that    dfd vv21 3 is given by

  



 

0
22

2
332

22
3 vvv

2

1
vv

2

1

i

M
d

ct

cM
d

ct

c

n

F
dfd

dr

dF
d







.                  (24)

Finally, operating on Eq. (19) with   v3d we obtain 














  
0

22

2
3

22
33 v1vvv

i

M

ct

cM
d

ct

c

n

F
d

dr

dF
dfd







.                      (25)

The radial electric field appears in the term dFM/dr [in Eqs. (24)-(25)] and can be found by 

forcing the radial particle flux in Eq. (24) to zero. For instance, when qRVTc  ,

corresponding to the plateau regime, we make use of    tctc   22 to obtain 
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






 


dr

d

T

e

dr

Td

dr

ndq
n

i

ii
iiT

0

00
212

0
2 ln

2

3ln

4
ˆ

 ,                              (26)

where qRVTT ̂ is the thermal transit frequency. It now follows that a quasi-stationary value 

of the radial electric field is given by drdTdrdpneE iiir 00
1

0 5.0  . Neglecting the small term 

   cos,max2 0 TniTcVeB  in the radial force balance equation [Eq. (16)], we readily 

obtain the well-known result k = -0.5 for the poloidal flow coefficient in the plateau regime [see 

Eq. (17)]. 

As the collision frequency decreases, the main contribution to the integrals in Eqs. (24)-

(25) comes from the resonant particles whose parallel velocity satisfy c
res qR ~v|| . Because the 

analytical model in Eqs. (19)-(20) neglects the mirror force and the effects of trapped particles, it 

is only valid in the regime where 21
|| vv res , which requires νc>>ε1/2VT/qR.  It is important to 

note that in contrast to the Krook operator in Eq. (18), a more adequate collision model (e.g., 

Lorentz, linearized Fokker-Planck, etc.) provides an “enhanced” collision frequency for small 

pitch-angle scattering, νeff~(v/v||)
2νc. Replacing νc with νeff as done in Ref. [40] yields the 

conventional plateau regime condition, i.e., νc>>ε3/2VT/qR.

Finally, for the strongly-collisional (Pfirsch-Schluter) regime, the first order correction to 

the local Maxwellian distribution decreases with an increase in the collision frequency, 

1
1

 cf  (see Eq. [23]). Accordingly, the ion heat flux decreases as 1 cQ  , in contrast to the 

conventional neoclassical result predicting 2
cQ  . This discrepancy appears due to the fact that 

the Krook model annihilates only a local Maxwellian distribution, implying f1=0, whereas a more 

complete collision model has nontrivial solutions to C[f1]=0. 

Figure 2 shows the dependence of the poloidal velocity coefficient on the collision 

frequency obtained in the numerical simulations and evaluated by making use of the diagnostics 

defined in Eq. (15). The results of the numerical simulations are compared to the analytical 

predictions, where the polodial velocity coefficient is evaluated as  0
1

irTnT TEk    , 

assuming a negligible toroidal flow velocity. This assumption, i.e., VφBθ<<VθBφ, is verified for 

the simulations over the entire range of the collision frequencies considered. As expected from 

the analytical analysis, excellent agreement between the simulations and the theoretical 

predictions is evident for νc>>ε1/2VT/qR.
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IV. LORENTZ COLLISION MODEL

We next consider the implementation of the Lorentz collision model and report on the 

results of neoclassical benchmark simulations. Note that the Lorentz operator is typically 

included in more detailed collision models, and therefore investigation of its performance is of 

considerable practical importance. Written using the variables of particle’s speed v=|v|, pitch-

angle ξ=v||/v, and gyro-angle ζ velocity, the Lorentz operator takes on a form [40]

    






























2

2

2
2

1

1
1

2

1





 ff

V

v
fC

T
DL .                                 (27)

Here,        3xxGxYx cD  is the collisional coefficient corresponding to collisions with a 

Maxwellian background characterized by the thermal velocity VT,     
x y dyexY

0

2

2  is the 

error function, and        22xxYxxYxG  . For the case of ion like-species collisions, the 

physical collision frequency, c , corresponds to  3244 ln4 Tiiic VmeZn   , which varies

spatially owing to the ion density and temperature dependence. Here, lnΛ denotes the Coulomb 

logarithm. However, for the clarity of the verifications studies, in what follows (Secs. IV-VI), we 

take νc=const with its value being specified where appropriate. 

FIG 2. Poloidal velocity coefficient k for the case of a non-zero temperature gradient. The polodial 
velocity coefficient is evaluated at θ=π/2. The parameters of the simulations correspond to ε0=0.01, 
q0=1.2, ρi/R0=4.54×10-7, r0/ΔT=67, κn=0, ρiθκT=0.018, (rmax-rmin)/r0=0.15. The grid resolution is nr=128, 
nθ=32, nv||=80, nμ=64, and the velocity grid size corresponds to |v|||max/VT =3.5, μmaxBφ/T0=9. Results are 
obtained using the particle-conserving version of the Krook collision model, i.e., ηp= 1, ηm=0.   

k
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An accurate gyrokinetic formulation of the Lorentz operator [Eq. (27)] would involve 

relating particle’s coordinates (r,v,ξ,ζ) to the corresponding gyrokinetic variables (R,v||,μ,ζgk)

used in Eq. (1), and then performing proper gyroaveraging [42-43]. However, this procedure is 

significantly simplified for the case of long-wavelength neoclassical simulations. Note the 

Lorentz operator annihilates a local Maxwellian distribution function, which is also a zero order 

solution to the gyrokinetic Eq. (1). Therefore, in order to preserve the accuracy of the Lorentz 

collision model to order δi≡(ρi/R0), it is sufficient to consider the lowest (zero) order relation 

between particle’s velocity coordinates and the corresponding gyrocenter coordinates, i.e.,

|||| vv ,   212
|| 2v imBv  , and gk  .                                          (28)

Furthermore, considering the long-wavelength (drift-kinetic) limit with max{κnρi, κTρi} <<1, we 

can neglect the difference between the gyro-averaged and local quantities. Finally, we neglect 

the ~∂2f/∂ζ2 term in Eq. (27), assuming that the classical gyro-diffusion is small compared to its 

neoclassical counterpart.

To make use of a finite-volume (conservative) numerical algorithm, we need to express 

the collision operator in conservative form, i.e.,  

       fJ
J

fJ
J

fC LLL
||

||

||

||

||

v
,v

||,v
,v

,v v

11









 





 
,                              (29)

where ( ||v
L , 

L ) are the covariant coordinates of a vector flux ΠL, and ,v||
J is the Jacobian of 

the transformation (vx, vy, vz) → (v||, μ, ζgk). Consistent with Eq. (28), we consider only the 

lowest-order approximation, taking imBJ ,v||
. The pitch-angle scattering part of the Lorentz 

operator can be represented in divergence form as 

       fJ
vJ

fJ
J

f

V

v v
Lv

v
Lv

vT
D 































 



 ,

,
,

,

2 11
1

2

1
,             (30)

where 0 v
L and       fDL

2121 are the covariant coordinates of the vector flux 

ΠL in the speed-pitch angle velocity coordinate system (v, ξ, ζ), and 2
, vJ v  is the Jacobian of 

the transformation (vx, vy, vz) → (v, ξ, ζ).  Making use of the corresponding relations [44] for

transformation of a vector’s covariant coordinates between (v, ξ, ζ) and (v||, μ, ζgk) coordinate

systems, it is straightforward to show that
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    
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




 ff
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B
xf
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DL ||

||
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|| ,                                                   (31)

    


















||

||
2
|| v

vv
ff

B

m
xf i

DL 


 ,                                              (32)

where   Ti VmBx
212

|| 2v  .

For the case of a single ion species, the following Lorentz model describing like-particle

collisions is implemented in the code

       
MD

MDmLL
COGENT
L

FdBd

fddB
BFfBfBfCB

||||

||||
*
||

||
*
||

v

||

*
||

*
||

vv

vv
v

v
||



















 ,   (33)

where MFff  . The second term in Eq. (33) is a momentum restoring term, where the 

switch ηm takes on only zero or unity values. Note that for the sake of implementation simplicity,

the collision operator in Eq. (33) contains terms  fBL  *
|| and  fBL *||

v|| instead of the more 

intuitively appealing  fB L *
|| and  fB L ||v*

||  . However, the difference appears only in order 

2
i , which is higher order than the gyrokinetic formulation under consideration.

Although the Lorentz operator in Eq. (33) conserves energy analytically, spurious 

diffusion in the energy space can appear due to the discrete (finite-difference) numerical 

evaluation of the pitch–angle scattering part of the operator. Note that the system’s energy would 

be exactly conserved numerically if, for instance, energy - magnetic moment variables were used 

to implement the Lorentz operator. Although, the energy-magnetic moment coordinates is indeed 

a common choice for the implementation of a gyrokinetic system, it introduces other numerical 

issues, such as velocity-grid “cut-cells” at the v||=0 boundary. The issue of the spurious energy 

diffusion was addressed in more detail Ref. [20], where we demonstrated that while a 2nd order 

accurate implementation of the Lorentz operator generates significant numerical diffusion, a 4th

order implementation suppresses it to a tolerable level. Furthermore, in the same work [20] we 

performed simulations of neoclassical transport making use of the Lorentz model [Eq. (33)] with 

ηm=0, and recovered the analytical results of Ref. [45] for the particle and heat fluxes. Note that 

those neoclassical simulations were performed for the case of a zero electric field and assumed 

νD(x)≡1.
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Here we present results of neoclassical verification studies that include the effects of self-

consistent electrostatic potential variations and are performed with both the conservative (ηm=1) 

and non-conservative (ηm=0) versions of the Lorentz model. The results of the illustrative 

neoclassical simulations are shown in Figs. 3 and 4. Figure 3 illustrates the time evolution of the

self-consistent radial electric field corresponding to weakly-collisional (banana) and strongly-

collisional (Pfirsch-Schluter) regimes. Figure 4 shows the poloidal velocity coefficient, k [see 

Eq. (17)], and the ion heat diffusivity, 

                               drdTn

Q

ii

 ,                                                            (34) 

plotted for different values of the normalized collision frequency defined by [35]

T
c

T B

B

V

qR 0230

3

4
* 


  ,                                                     (35)

where   2122
0 pT BBB  . The parameters of these illustrative examples correspond to: q0=1.2,

ε0=0.1, ρiθκn=ρiθκT=0.007, ρi/R0=1.7×10-5, r0/Δn=r0/ΔT=71, and (rmax-rmin)/r0=0.1. The results of 

the numerical simulations are found in good agreement with the following analytical predictions.

(a) Weakly-collisional regime (ν*<<1), large aspect ratio (ε<<1), momentum-conservative 

Lorentz model (ηm=1).  

The poloidal velocity coefficient, k, and the heat diffusivity, χ, are given in this regime 

approximately by [40]

 
2

46.11
17.1

h
k


 ,                                                 (36)

2

0223

ˆ
71.0

ii

i
c

m

T
q


  ,                                                 (37)

where  cos1h , and cmeBZ iii 0
ˆ  .

(b) Weakly-collisional (banana) regime (ν*<<1), large aspect ratio (ε<<1), non-conservative 

Lorentz model (ηm=0).

The analysis in Ref. [40] performed for the case of a momentum-conserving Lorentz model can 

be generalized in a straightforward manner to obtain
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FIG 3. Time evolution of the normalized radial electric field, eErr0/T0, for the weakly collisional (solid red 
curve) and strongly collisional (dashed purple curve) cases. Results are obtained using the conservative, 
i.e. ηm=1, version of the Lorentz collision model. The parameters of the simulations correspond to ε0=0.1, 
q0=1.2, ρi/R0=1.7×10-5, r0/Δn=r0/ΔT=71, ρiθκn=ρiθκT=0.007, (rmax-rmin)/r0=0.1. The grid resolution is nr=32, 
nθ=16, nv||=96, nμ=48, with |v|||max/VT =3, μmaxBφ/T0=9 in the banana regime, and nr=32, nθ=16, nv||=48,
nμ=32, with |v|||max/VT =3.5, μmaxBφ/T0=11 in the Pfirsch-Schluter regime
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FIG 4. Plots of the poloidal velocity coefficient, k,  evaluated at θ=π/2 [frame (a)], and the normalized heat 
diffusivity,  ii ̂ˆ 2 , [frame (b)], versus the normalized collision frequency ν* [Eq. (35)]. Here, 

2
0

ˆ2ˆ iii mT  . The results of COGENT simulations obtained using the conservative, i.e., ηm=1, (blue 

diamonds) and non-conservative, i.e., ηm=0, (green triangles) versions of the Lorentz collision operator are 
compared against the analytical predictions given in Sec.III. The parameters of the simulations are the 
same as in Fig. 3.

k

Eqs. (37), (43)

(a) (b)

Eqs. (36), (42)

Eqs. (47) Eqs. (46)

 ii ̂ˆ 2
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where the operator {A(x)} is defined for an arbitrary function A(x) as 

                                   
 
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8
dxxexAxA x


.                                                 (40)

As discussed in Sec. III, collisions that do not conserve momentum generate a non-trivial particle 

flux in order (κρi)
2. Following the analysis in Ref. [40], it is straightforward to show that
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The quasi-stationary radial electric field can now be obtained from the requirement of the quasi-

neutrality, which for the case of the adiabatic electron response in Eq. (6) requires Γ=0. It 

follows that
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  ,                                                 (43)

which is identical to the corresponding values of the poloidal velocity coefficient and heat 

diffusivity obtained for the conservative version of the Lorentz collision model [Eqs. (36)-(37)]

(b) Strongly-collisional (Pfirsch-Schluter) regime (νcVT/qR>>1), large aspect ratio (ε<<1), non-

conservative Lorentz model (ηm=0).

Extending the analysis in Ref. [45] to the case where the collision frequency is an arbitrary 

function of a particle’s speed, it is straightforward to show that
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and 
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Again, determining the radial electric field by forcing the particle flux in Eq. (44) to zero, we 

obtain 

Tii

i
c B

B

m

T
q 0

2

02

ˆ
2

71.0


  .                                                  (46)

It can be shown for a strongly-collisional regime that the quasi-stationary toroidal flow velocity 

corresponding to the non-conservative Lorentz collision model, ηm=0, is much smaller than the 

diamagnetic velocity. We can therefore neglect the term (Zie/c)VφBθ in Eq. (16) to obtain

TB

B
k 017.1 .                                                          (47)

In conclusion, we briefly discuss some features of the radial electric field time evolution. 

The system relaxation to a quasi-stationary state shown in Fig. 3 is accompanied by geodesic 

acoustic mode (GAM) oscillations [46]. There are two mechanisms for the GAM relaxation: 

collisional, which occurs on a collision time scale ~1/νc, and collisionless phase mixing. 

Collisionless relaxation of long-wavelengths GAMs with 1 ik  occurs as the result of wave-

particle interaction between GAMs and passing particles whose poloidal velocity satisfies the 

resonant condition GAM
res rv  ~ . Here, RVTGAM ~ is the GAM frequency. Assuming 

Er<<VTBθ/c, which corresponds to the parameters of the illustrative simulations in Fig. 3, it 

follows that BBvv resres
 || , and we obtain a well-known result T

res qVv ~|| . Note that the 

parameters of the illustrative numerical simulations in Fig. 3 correspond to q0=1.2, therefore the 

resonant velocity is close to the thermal velocity, and the collisionless relaxation is strong. In 

particular, it is evident for the weakly collisional regime (see Fig. 3) that the GAM relaxation

occurs on a time scale less than 1/νc, i.e., the collisionless relaxation dominates. After GAM 

oscillations are damped, the radial electric field continues to relax to its quasi-stationary

(“neoclassical”) value on a collisional time scale [46].

Finally, we note that although the second burst of GAMs, which occurs at νct~0.5 for the 

weakly-collisional case, can be attributed to the physical effects of nonlinear wave-particle 

interaction, its parameters are sensitive to the velocity grid resolution. For instance, the burst

appears at a slightly later time and has a substantially smaller amplitude when the velocity-space 

resolution is increased. This reduction with mesh resolution implies that the burst can be also 

attributed to the numerical recurrence phenomena described in Ref. [47]. While a detailed 
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analysis of this effect is outside the scope of the present work, it is important to note that the 

characteristics of the system in the final relaxed (quasi-stationary) state are numerically 

converged. That is, an increase in the phase-space resolution does not affect the results shown in 

Fig 4.  

V. LINEARIZED MODEL COLLISION OPERATOR

For the case where the particle distribution function is close to a local Maxwellian 

distribution, a linearized approximation to the full non-linear Fokker-Planck collision operator, 

CFP, is often used to describe the like-species collisions, i.e.,

     fFCFfCffC MFPMFPFP  ,,,  ,                                           (48)

where MFff  . The first term on the right-hand-side of Eq. (48) describes collisions with a 

Maxwellian background, including energy diffusion and pitch angle scattering, and is given by

[40]
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Here, CL[δf] is the Lorentz operator defined in Eq. (27), x=v/VT is the normalized particle speed,

   xGxx cs  14  , and    xGxx c 3
|| 2  . The constant collision frequency νc=const and the 

coefficient G(x) are defined in Sec. IV. The exact evaluation of the second term in Eq. (48) is,

however, nearly as challenging as the evaluation of the full nonlinear Fokker-Plank operator. 

Therefore, in simplified linearized collision models this term is typically replaced by a few terms 

chosen to ensure that the model operator maintains certain features (e.g., conservation properties)

of the original linearized operator [Eq. (48)]. The following linearized collision model [21] is 

utilized in the COGENT code 
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where 

  M
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vFv
v ||
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



 ,                                                 (51)

and the functionals  fU and  fQ  are now uniquely chosen to ensure the momentum and 

energy conservation properties [21], 
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As shown in Ref. [21], this model linearized collision operator [Eqs. (48)-(53)] ensures the 

following properties of the original linearized collision operator: it conserves particles, 

momentum, and energy, obeys Boltzmann’s H-theorem (collisions cannot decrease entropy), and 

vanishes for the case where δf is represented by a linear combination of FM, vFM, and v2FM.

A detailed gyrokinetic formulation of the linearized model operator [Eqs. (48)-(53)] is 

given in Ref. [21]. However, for the case of long-wavelength neoclassical simulations considered 

in this work it is sufficient to use the simplified “drift-kinetic” version of the operator (see Sec. 

IV), which takes on the following form in the (v||, μ) coordinates 
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The first two terms on the right-hand-side of Eq. (54) correspond to  MFP FfC , in Eq. (48), 

where the collisional Lorentz fluxes ||v
L and 

L are specified by Eqs. (31) and (32), and the 

energy-diffusion collision fluxes ||v
ED and 

ED are given by 
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Note that similar to the implementation of the Lorentz operator (see Sec. III), the collision fluxes 

in Eqs. (55)-(56) are calculated for the combination fB *|| . From Eqs. (50) and (52) it follows that 

the momentum restoring term MR is 
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vv

vv
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 .                                             (57)

The last two terms in the curly brackets on the right-hand-side of Eq. (54) correspond to the 

conservative (divergent) form of the energy restoring term, where 
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Finally, as in Sec. IV,   Ti VmBx
212

|| 2v  , MFff  , and the switches ηm and ηE take 

on only zero or unity values. The model energy restoring term specified by Eqs. (50)-(51) can be 

implemented in the conservative form [see Eqs. (54) and (58)-(59)], and therefore the finite-

volume (conservative) discretization scheme provides exact (numerical) particle conservation. 

The implementation of the model linearized operator [Eqs. (54)-(59)] has been tested in a 

series of verification studies. First, accurate annihilation of the distribution function perturbation 

δf represented by a linear combination of FM, v||FM, and v2FM is demonstrated. Next, Fig. 5 shows 

the results of the neoclassical simulations performed with the model linearized operator. The 

system parameters assumed in these simulations are the same as in Fig. 4 (see. Sec IV). The 

results of the numerical simulations for the poloidal velocity coefficient, k, and heat diffusivity, 

χ=-Q/[ni(dTi/dr)], are compared to approximate analytical predictions that take into account the 

effects of a finite inverse aspect ratio (ε) and provide interpolation between the weakly

collisional (banana) and strongly collisional (Pfirsch-Schluter) regimes. Figure 5 illustrates the 

NCLASS-code [48] predictions for the poloidal velocity coefficient, and Chang-Hinton 

predictions [49] for the ion heat diffusivity. Assuming no Shafranov shift [consistent with the 

magnetic geometry in Eq. (8)], the Chang and Hinton approximation has the following form:  

i

iK



 
2

21
2 .                                                             (60)

Here,  piiTi eBZcmV is the poloidal gyroradius,  ci  223 , and the coefficient K2

is given by 
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where the normalized collision frequency is given in Eq. (35). 

Figure 5 shows that the results of the simulations are found to be consistent with the 

analytical predictions in Refs. [48-49]. Note, however, that exact agreement should not be 
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expected since the analytical studies assume collision models that are different from the one 

given in Eqs. (54)-(59), and furthermore there are no analytical methods for a rigorous treatment 

of the intermediate collisionality regime, i.e., ν*~1. The level of quantitative discrepancy is found 

to be similar to that observed in verification studies performed with other gyrokinetic codes [17-

18]. 

V. EFFECTS OF A STRONG RADIAL ELECTRIC FIELD

The properties of neoclassical transport can be significantly affected by a strong radial 

electric field corresponding to

cBVE Tr ~ .                                                                   (62)

A radial electric field of this magnitude can be present in the steep edge of a tokamak under H-

mode conditions. Indeed, the length scale for plasma density variations in a tokamak edge can be 

of the order of the poloidal ion gyroradius, κnρiθ~1, and the estimate in Eq. (62) follows from the 

radial force balance equation [Eq. (16)], provided the ion flow velocities are less than the thermal 

velocity, i.e., Vθ, Vφ < VT. 

FIG 5. Plots of the poloidal velocity coefficient, k, evaluated at the outer midplane (θ=0), [frame (a)], 
and the normalized heat diffusivity,  ii ̂ˆ 2 , [frame (b)], versus the normalized collision frequency ν* 

[Eq. (35)]. The results of the COGENT simulations (red dots) are compared with the results obtained 
with the NCLASS code [blue dashed curve in frame (a)], and the Chang-Hinton analytical approximation 
[blue dashed curve in frame (b)] given in Eqs. (60)-(61). The parameters of the simulations correspond to 
ε0=0.1, q0=1.2, ρi/R0=1.7×10-5, r0/Δn=r0/ΔT=71, ρiθκn=ρiθκT=0.007, (rmax-rmin)/r0=0.1. The grid resolution is
nr=32, nθ=16, nv||=96, nμ=48, with |v|||max/VT =3, μmaxBφ/T0=9 in the banana regime, and nr=32, nθ=16, 
nv||=48, nμ=32, with |v|||max/VT =3.5, μmaxBφ/T0=11 in the Pfirsch-Schluter regime. Results are obtained 
using the momentum and energy conserving form, i.e., ηE=ηm=1, of the model linearized operator given 
in Eq. (54). 

 ii ̂ˆ 2
(b)

k
(a)
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Recent analytical studies demonstrated that the presence of the strong radial electric field 

given in Eq. (62) significantly modifies the conventional results of the neoclassical formalism 

developed for a tokamak core region where Er<<VTBθ/c [22-23]. In particular, it was shown that 

a strong radial electric field provides suppression of the neoclassical ion heat flux. Also, it was

demonstrated for a weakly collisional (banana) regime that the poloidal ion flow can change its 

direction as compared with its core counterpart. The modifications come primarily from the fact 

that the conventional neoclassical analysis neglects the E×B drift velocity contribution to the 

poloidal advection term in the ion drift-kinetic equation, i.e.,        fqRfr ||
1 vθeR

is assumed. While this assumption is typically valid in the tokamak core region, the presence of a 

strong radial electric field in the edge [Eq. (62)] makes the contribution of the E×B drift to the 

ion poloidal velocity comparable to the parallel streaming contribution, and therefore it can no 

longer be neglected [22-23]. Retaining the E×B piece of the advection velocity in the analysis of 

the quasi-stationary neoclassical equilibrium, i.e.,

        frBBEcqRfr r
2

||
1 vθeR , has important consequences. In particular, the 

E×B velocity modifies the shape of the boundary between trapped and passing particles, shifting

it toward the tail of the ion distribution function. For a weakly collisonal regime, this leads to a

suppression of ion heat flux and a change in the poloidal flow direction [22]. 

The gyrokinetic model implemented in the COGENT code [Eqs. (1)-(4)] offers an 

accurate description of long-wavelength neoclassical physics including the parameter regime 

where a radial electric field is the order that in Eq. (62), provided Bθ<<Bφ. It is therefore of 

considerable practical interest to numerically investigate the effects of a strong radial electric 

field on the neoclassical transport coefficients. Figure 6 shows the results of the numerical 

simulations corresponding to the case of a weakly collisional regime with ν*=0.3 obtained using 

the conservative version of the linearized collision model, i.e., ηm=ηE=1. Each data set illustrated 

in Fig. 6, which includes the poloidal velocity coefficient, ion heat diffusivity and normalized 

radial electric field, corresponds to an independent simulation distinguished by its value of the 

initial density gradient, κn. All data sets are evaluated at the radial coordinate r≈0.98r0,

corresponding to a local maximum value of the radial electric field for the simulation with the 

steepest density gradient. In order reduce the computational time required to simulate slow

(nearly-collisionless) relaxation of large-amplitude GAM oscillations associated with steep 

density gradients, we start the simulations (in Fig. 6) with a higher collision frequency, ν*=10.5.
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As the GAMs are rapidly (collisionally) damped, the collision frequency is slowly (adiabatically)

reduced to its steady-state value of ν*=0.3. Finally, we consider inverse density and temperature 

profiles, i.e., κn<0, κT<0, for the simulations presented in this section. While similar results are 

obtained in the interior of the simulation domain for either sign of κn and κT, fewer numerical 

artifacts near the domain boundaries are observed for the case where κn<0, κT<0.

Consistent with the analytical prediction in Ref. [22], the simulations recover a change in

the poloidal velocity direction and a suppression of ion heat flux. However, there is also a

pronounced quantitative discrepancy. The latter can plausibly be attributed to finite inverse

aspect ratio (ε) corrections. Indeed, the analytical analysis in Ref. [22] retains only the lowest 

order effects in ε. For instance, in the limit of a small radial electric field Er<<VTBθ/c,

corresponding to the conventional neoclassical formalism, the analysis in Ref. [22] recovers 

k=1.17. However, for the case of ε0=0.029, which is used in the present illustrative simulations, a 

more accurate estimate [Eq. (36)] predicts a significantly different value, k=0.88. Also, the 

differences between the linearized collision model in Eqs. (54)-(59) and that used in Ref. [22] 

FIG 6. Plots of the poloidal velocity coefficient, k (blue diamonds), and the normalized ion heat 
diffusivity, χ/χBAN (red circles) evaluated at θ=π and r≈0.98r0, versus the normalized radial electric field. 
Here, χBAN is the weakly-collisional ion heat diffusivity given in Eq. (37). The parameters of the 
simulations are ε0=0.029, q0=1.2, ν*=0.3, ρi/R0=9.2×10-5, r0/Δn=r0/ΔT=21, ρiθκT=-0.13, (rmax-
rmin)/r0=0.4375, |v|||max/VT =3.5, μmaxBφ/T0=9. The normalized density gradients used in the simulations 
correspond to -ρiθκn=0.13; 0.67; 1.61; 2.2. The grid resolution is [nr=48, nθ=32, nv||=96, nμ=48], and [nr=64, 
nθ=32, nv||=128, nμ=80] for the simulations with the minimum and maximum values of the density 
gradient, respectively. Results are obtained using the momentum and energy conservative form, i.e., 
ηE=ηm=1, of the model linearized operator given in Eq. (54). 

k,
BAN


BVcE Tr
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become increasingly important for finite values of ε. Finally, for the case of steep density 

gradients, κnρiθ~1, and a non-uniform temperature distribution, nonlocal effects appear for finite 

values of ε. That is, the variations in the ion density become pronounced on the banana-width

length scale, Δban~ε1/2ρiθ. The analytical treatment in Ref. [22] assumes the local-theory limit 

(κnΔban<<1), which implies ε1/2<<1. However, this constraint is not well-satisfied in the present 

simulations corresponding to ε1/2=0.17. Also note that the collisionality constraint for a weakly 

collisional (banana) regime, i.e., ν* <<1, is not well-satisfied in the present simulations 

performed for ν*=0.3. In principle, an attempt to reproduce the results of the analytical results 

quantitatively could be made by decreasing the collision frequency along with the inverse aspect 

ratio, ε. However, a significant decrease in the inverse aspect ratio below its present value of 

ε0=0.029 would require simulation times beyond the scope of this initial study.

In conclusion we note that a strongly-sheared equilibrium electric field can significantly 

suppress turbulent transport [50], therefore a detailed analysis of neoclassical transport in the 

steep edge region of a tokamak is of considerable practical importance. In addition to a strong 

radial electric field, the edge of a diverted tokamak is distinguished by ion orbit losses, which 

can also significantly influence the properties of neoclassical transport. While the orbit loss

effects provide a significant challenge for a detailed analytical analysis, our newly available 

divertor version of the COGENT code, which includes both the pedestal and the scrape-off-layer 

(SOL) regions, will allow us to perform a detailed numerical investigation of these phenomena.

IV. CONCLUSIONS 

In this paper we report on the development and application of the nonlinear continuum 

gyrokinetic code COGENT for edge plasma simulations. The code is distinguished by the use of 

a fourth-order finite-volume (conservative) discretization combined with arbitrary mapped 

multiblock grid technology (nearly field-aligned on blocks) to handle the complexity of divertor 

geometry with high accuracy. While the discussion of the numerical algorithms and the initial 

advection tests is reported elsewhere [13-14], the present work discusses the implementation of 

various collision models and analyzes code results for advanced neoclassical simulations 

including the effects of self-consistent variations in the electrostatic potential. In particular, we 

discuss the implementation and testing of the Krook, Lorentz and recently proposed model 
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linearized collision operators [21]. The results of the neoclassical simulations performed with 

these operators are found to be in good agreement with various analytical predictions. 

In addition, we give results of the first numerical simulations of neoclassical transport 

including the effects of a strong (self-consistent) radial electric field on the ion poloidal flow and

heat flux. Recent analytical studies [22-23] demonstrated that the presence of a strong radial 

electric field of order Er~VTBp/c, which is consistent with a subsonic pedestal equilibrium under

H-mode conditions, modifies the conventional results of the neoclassical formalism developed 

for the core region, where Er<<VTBp/c. In particular, it was shown that a strong radial electric 

field provides suppression of the neoclassical ion heat flux.  In addition, it was demonstrated for 

a weakly collisional (banana) regime that the poloidal ion flow can change its direction as 

compared with its core counterpart. These earlier findings were applied to elucidate the 

discrepancy between the conventional banana regime predictions and recent experimental 

measurements of the impurity flow performed on the Alcator C-Mod tokamak [24]. The results 

of the self-consistent numerical simulations obtained using the COGENT code in a weakly 

collisional regime are found to be in good qualitative agreement with the theoretical predictions 

in Ref. [22]. In particular, a change in the poloidal ion flow direction and a suppression of the ion 

heat flux are demonstrated. A quantitative discrepancy between the results of the analytical 

analysis and the numerical simulations is discussed and shown likely due to a combination of 

finite aspect-ratio, finite orbit-size, and finite-collision-frequency effects. Finally, we note again 

that the results of the self-consistent neoclassical simulations for the case of steep density 

gradients (characteristic of a tokamak edge) are obtained with the closed-flux-surface version of 

the code. Our future work will extend the analysis to include the effects of ion orbit losses by 

making use of the newly available divertor version of the COGENT code, which includes both 

the pedestal and the scrape-off-layer regions.
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